
METHOD OF AVERAGING T H E  RADIATION 

TRANSFER EQUATIONS FOR A 

NONEQUILIBRIUM PLASMA O F  PLANE 

GEOMETRY 

I. B. Kosarev UDC 519.6:533.7 

A method is presented for averaging the radiation transfer equations for a nonequilibrium 
plasma of plane geometry. The averaging of transfer difference equations is carried out 
separately for each spectral line and for groups of a continuous spectrum. A difference scheme 
is obtained for one-sided radiation fluxes. Averaging coefficients are defined, characterizing 
absorption and emission of radiation by a cell of the difference scheme. 

In solving radiation-gas dynamics problems with detailed calculation of the radiation spectrum of a gas, serious 
difficulty is encountered, owing to the necessity for interactive solution of the transfer equations with different values of the 
photon energies and the directions of their propagation. Methods of averaging the transfer equations have been found to be 
effective for reducing the volume of computation [1-4]. Still greater difficulty arises in the case when the plasma is 
nonequilibrium, and besides the equations of gas dynamics, and radiation transfer, it is necessary to solve equations of chemical 
kinetics. An attempt to generalize the averaging methods [1-4] to the nonequilibrium case has already been made [5]. Here, 

we describe a method, differing from [5] in a number of essential details, and namely in the choice of reference coefficients, 

more precise determination of the radiation density values determining the rate of photoionization, and, taking into consideration 
the dynamic Doppler shift, and the profile of a spectral line associated with macroscopic velocities in the plasma. We note that 
some problems connected with averaging the transfer equations applied to nonequilibrium situations have been considered in 
[6-8]. 

The proposed method of averaging the radiation transfer equations is based essentially on the emission and absorption 
spectra in nonequilibrium highly ionized and/or rarefied plasma, in which the distribution, as regards the degree of ionization 
and excited states, differs greatly from the Saha-Boltzmann, and is near to coronal [9, 10]. The emission and absorption 
spectra in this case are a combination of resonance spectral lines of a rather complex shape [ 11], far from each other (compared 

with their widths), on a low background continuous spectrum. Transitions between excited states cause a small contribution, 

almost not affecting the main picture of the spectrum. Since the mechanisms of formation of line and continuous spectra are 
essentially different, and also by virtue of the fact that lines situated in different regions of the energy spectrum have different 

effects on one or another electron shell of different ions present in the plasma, averaging in each line and in groups of the 
continuous spectrum is performed separately. 

The averaging method described below is directly related to the Lagrange gas-dynamics scheme used in numerical 
computations [12], in which the density, electron concentration, ion composition, and electron and ion temperatures are 
identical through the volume of a cell. In the nonstationary equations determining the ion composition of the plasma, the 
radiation appears in the following form [9]: 
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The contribution associated with radiation in the equation for the electron energy looks similar: 

Ax Ax Ax Ax 

i S I + d x + !  l-dx ? hot i ! l + d x + J l - d x  1 
X d/z o + d8 g~in (Q Eaug~r (Z) d~ . 

(2) 

In the second term of (2) the process of autoionization decay (Auger effect) is taken into account; a z @h~ is the 
photoionization cross-section of inner shells, with ionization potential E(in), in the dislodging of electrons from which, 

autoionization decay occurs; EAuger(Z ) is the disintegration energy of the escaping electron. The effect of the radiation on the 
ionization composition of the plasma through the rates of dielectron and photorecombination may be allowed for by introducing 
in the expression for the rates of the corresponding processes, the radiation density, averaged over a cell, taken in the form 

analogous to that used in (1), (2) [9-11]. Therefore, it may be seen that radiation enters the equation in the form of the 

following integrals: 

= - - o z ~  (e) d~ I +-(e, v) dx, (3) 
8 
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1. Averaging over a Spectral Line. Owing to the sufficiently small width of a line, the quantities F 1 and F z may be 

rewritten in the form 

p h o ~  - *o+Aa 1 Ax 

3" d,.! (5) 
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Here, t o is the photon energy corresponding to the center of the line. 

Let us calculate the quantity 

~o+Ae 1 Ax 

S de.l'd'S I+-dx" 
eo--A~ 0 0 

We write the transfer equation for the radiation intensity It +, in the positive (+)  and negative ( - )  directions: 

(6) 

dl~ _ k + IX--d-~= + ( r + k3 l~ + (~l~ -t-vl~). (7) 

Here, lc e and ~Te are the absorption coefficient and radiation power in unit solid angle for a photon with energy e in the 
continuous spectrum; kl + and 'Ol + a r e  analogous quantities for the spectral line 1% and r/c. In taking into account the dynamic 
Doppler shift, the quantities with the + sign differ from those with the - sign: 

kT = ze~h 

mc 
- -  fz~N~q ~, ~l~ = N(")A~I(P:~8o/4z, 

where e and m are the charge and mass of the electron; c is the velocity of light; h is Planck's constant; N z is the number of 
ions z situated in the lower level. For the resonance lines considered, N z is the number of ions situated in the ground state; 

~o -+ is the contour of the spectral line. 
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Let us introduce one-sided radiation flux 

l 

qg = 2n ~*I~dl*, (8) 
0 

Integrating (7) with respect to / ,  with limits from 0 to 1: 

1- d 4- Oq~-_ T 2a i d#(le{ + k~)l+ + 2a J p,(nr+n~),  (9) 
Ox 

0 0 

and then integrating successively, first, with respect to e in the limits e 0 - Ae to e o + axe (Ae is defined by the condition that 

at points e o + Ae the line is practically indistinguishable from the background), and, second, over the cell from 0 to Ax. For 

total fluxes ql and q2 on the boundaries of the cell, we get 

eoq-A8 1 AX 

___ (q~:--q~:) = -T2r~ S & j'd~ ( dx(k~ + &)iT § 2~ • 
Co--As 0 0 

Ax s o + A s  1 

• .! dx ~ &.[ d~(*l:f +~h). (10) 
0 t~o--A8 0 

In the last term of (10), taking into account normalization of the line contour, entering in the expression for rll +, integration 

may first be with respect to e and then with respect to/x and x. This gives the full power of the radiation in the line, integrated 

over the length of a cell, i.e., the quantity determined only by the population distribution of the upper level N(u) over the cell 

and transition probability. 

Let us transform the first term on the right-hand side of (10). From the mean-value theorem, we get 

E~-FA8 1 Ax 8oq-A8 1 AX 

2a ~ dsSdp,;dx(k~:q-ko)I+=2n(te~+ko) S de . fd , ;  dx1~. (11) 
so--As 0 0 8o--A8 0 0 

This equality serves to define the mean absorption coefficient averaged over the cell and over the radiation spectrum 

e~+Ae  1 Ax 

( k_+ ~o-a, o o z + G ) =  c o + A s  1 Ax 

eo--A8 0 0 

Therefore, we may write: 

eo+Ae 

8o~-A8 

Writing out (kl + + ke) 

1 k x  A u l ~  ~ Ax  

& 5 dp~ .t axe[ . + - - ~  5 N("'dx + 4r~noAxAs. 
0 0 0 

(12) 

e,+ae 1 Ax ( al~h ) + 

( let + lec ) ~o-~ "o o mc 

So --A8 0 0 

i.e., the averaged line contour 

eo+A8 1 Ax 

eo iAe  9 0 
( qD• ) = eo+~ 1 ax 

5 f I e,i[ 
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(13) 

(14) 
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Fig. 1. Distribution of the quantities 
considered on a numerical grid; the 

radiation flux qi, intensity Ii, and rate u i are 
computed on the boundaries of the cells; 

qi+ 1/2, Ii+ 1/2 and the population density of 
the upper level Ni (u) are computed at the 
center of the cell. 

Below, the coefficient (k/+ + ke) is taken as a reference. 

The population density of the upper level of line N (u) is determined at the center of the i-th Lagrange cell from the 
Biberman- Holstein integral equation [13-15]: 

NzNz ( wo l  ) - -  N~U) Nz ( vcrlo ) --A,,zN~u)+Auz f N C" (x') O (x, x') dx' = O. (15) 

Here, for clarity, as the mechanism of populating the upper level, only excitation by electron collision from the ground state 
is taken into consideration; (Vaol } is the rate of excitation; (valo) is the rate of de-excitation of the upper state. They are 

connected by the relationship [I0] 

(vCrlo)~ gig~ ( w 0 ~ ) e x p (  AE01).T . (16) 

In the numerical solution of (15), the dependence N(U)(x) between the centers of the two adjacent cells in which Ni(U) 

and Ni+l (u) are computed is taken to be linear. An alternative solution of the integral equation (15), used in numerical 

calculations, is the determination of the radiation field in the line and the population density N (u) by the method of Rybicki [I 1, 

16]. 
In calculations of radiation-gas dynamics problems, a solution of the Biberman-Holstein equation is made at definite 

moments of time for perceptible change in the macroscopic parameters of the plasma. In the intervals between these moments, 
the matrix of coefficients approximating the kernel G(x, x'), connecting the quantities N (u) at different points of the computation 
region, is preserved. We note that the use of approximate expressions for elements of this matrix, as, for example, in [17], 
gives a relatively low accuracy, since the expression used in [17] is based on an asymptotic expression for the kernel G for 

a uniform stationary medium. 
Let us consider the calculation of the quantity q2 + - ql + from (10). For this we use an explicit form of the solution 

for the intensity Ie + , supposing that in the first half of the calculation cell, the rate v, appearing in the expression for the line 
contour, is constant and equal to v = (1/2)[u i + (u i + Ui+l/2)] = 0.75u i + 0.25ui+ 1. In the second half of the cell, v = 
0-25ui + 0-75ui+ 1. Analogously with [4], we average the difference solution of the transfer equation (corresponding to the 

positive direction) 

Its solution takes the form 

dl + F 
dx (kc q - k  +) I + q - , ' (N 'U)+  N(~)'x)--~-~-Aul~+q-- j . (17) 
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I,%,/~ = I + exp ( - -  "~dl z) q- (Sr -t- S~ +) [1 - -  exp (--  %/1*)1 - -  

where Ii+l/2 + is the solution at the middle of the i-th cell (see Fig. 1); 

S+l~ . [1  ** exp ( - -  %/1~)], (18) 

% = (k~- + kr Ax',  hx" = Ax/2; 

S}-= A~'tN}")q~+" Sr  ~1~ . S+ = A~N(")" N(u), dN (") 

dx 

The derivative dN(U)/dx [ _ from the left differs from the derivative dN/(U)/dx [ + from the right. Then, we have for the flux 

qi+l/2 + 

eo-}-As 1 
q~+1/2----- 2~ t" de 3" ~Ii+l/2d[* - =  q~V exp (--  ~i ( k+ + kc ) hx')  + 

eo'~As 0 

d- 2nq~ [~d-fr (~+ ( kT--t- kr ) ,  ax ' )  + 
< k + +  k~ ) 

< ~++}~), 

_ 2nAuzN(~ ), f~+/+ (a2 + < k + + k~ ) Ax') 
2 < k + + ~ ) i  

Here, we introduced the following functions and parameters computed sequentially from the conditions: 
a) ~i + determined from the equation 

eo--Ae 1 ( k?.df_ke ) 
2~ j' as.I d ~  ~xp A~' /+= exp (-- ~? < k?+ k~ ) ,  A,') q?, 

so--as 0 b I' 

b) fc +, tic +, and 0% + from the equations 

8o@A8 1 Ddlx 15~ ~o+aS ~i [3~- 
--~ S ds ~d~-- As, 

S e~.i' ~ + k ~  <k~++k~>~o_~o 0 <k,++k~>, I?o--Al~ 0 

~.+~e 1 dt~p, exp (--'D/p) 

so--A8 0 
( ds dN* exp ( - -  *dt~) = 

<Is + + k ~ > , ~ o •  o 

[~j-2As E 3 (a + < k, + k~ ) gx'), f~ (9) = As [1 - -  2Es (~j)]; 
< k~++ko> 

c) fl + , fll + , and C~l + from the equations 

So+aS I dbt~qD + 1~+/2 
.I ,t~ I k~ + +  k~ - k+ #c 

~o• ~ ( + ) ' 
co+As l 

So-6, o k~[d-kr (k+ +k~) 

i~ + (v) = 1 __ G (v), 
2 

so+As 1 ss j' d•sqo+ exp (-- ~/~) _ ~,+ E, ( ~  < k? + ko ) Ax') 

~o-a~ o k~ + + k~ < kl++ k, ) 

d) f2 + , /32 + , and r + from the equations 

(19) 

(20) 
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e o + A g  1 

~o-Ag o (k?+k~)~ <k + + k ~ > ~  ' 
8 o + A s  I 

J' d~ ~ d.~'q>+ i(%//x) + exp (--  %/b01 _ 

~.-~g o (k? + k~)~ - 

13~ Ax' 
~ o + A g  I 

2 + j' de f d~x~cP+ e• (-- %/1~) 
< ~? + ~c (k?+ k~)~ ' eo--A8 0 

eo~-A~ 1 
j' de j" dNx~q~ exp (--  %//*) _ [3+ ea (~+ ( k++  k, } ikx'),  

~o_A~ o ( k+ + ~)~ < ~+ + k~ >~ 

1 ~? v &(v).  
[~(Y)= 3 a+[~z + 2 

This set of parameters ~i +, t3c +, %+,  /31 +, ~1 + , /32 + and c~2+ for the quantities with + index are defined in the left half 
of a cell, for radiation travelling from left to right. These parameters may be defined analogously in the right half of the cell, 

but for radiation travelling from right to left ( -  index). 
Interpolating and extrapolating the mass data of these parameters, and also the averaged line contour (r in 

correspondence with the physical characteristics of the problem, over the space-time cell in intervals between averaging, the 
quantities F 1 and F 2 may be calculated for each cell, by using the equations 

go+A8 1 AX i 

# 
go--AN 0 0 

q+-- q++l + e0 .!" NC">dx + 4aqeAxike 2a ( k + -/k~ ) ,  
0 

8o+A~ I Ax i 

eo- -ke  0 0 

)/ q7+I - q7 + eo ~ N~"~dx + 4~q~k&Ae 2~ ( k7 -[- ke ) �9 
3 

2. Averaging in the Continuous Spectrum. In the kinetic and power (for Te) equations, the contribution of the 
continuous spectrum conforms to the equations 

~ a~ (s - -  E~k) ~ z~ l+ dx 

ax 0 0 ga 0 0 
Here e 1 and e 2 are the lower and upper limits of the groups; ~1 corresponds to the thresholds of photoionization of electron 
shells, and t 2 is, generally speaking, inflate, but it is possible that it will be necessary in a specific situation to choose e 2 to 
have a finite value, in order to then sum the contributions of different groups of quanta in the continuous spectrum, i.e., the 
quantity e 2 is, for the present, not defined more precisely. Designating H 1 - ae/~ and H 2 = ae/e(e - Ezk), we can write 

e2 I Ax  ~ , Ax 

H1,2 (g)dg f d .  i ] f f d x , =  ( I"I~,,2 ) f dg t'd~l, !" ]~dX. 
et 0 0 gt 0 0 

Let us introduce the density and radiation flux in the g-th group: 

g~ 1 g2 1 

U~= 2n j" & i 'd~I:;  q2~- 2n j ' &  ,f ~l:d~.  
e, (J e, o 

We write the transfer equation for the continuous spectrum: 

p , - -  --  • 
- -  ~ k f l s  + "q~. 

Ox 
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Integrating with respect to/z, e and over the cell, we get 

o r  

E= AX 8 2 

81 0 e I 

g~ AX 82 

+___(q~+l--q~)=T-< k+- ) g 3"de S Uf dx + 2aAx .[ ncde. 
81 0 8~ 

e2 Ax 

Hence, it is seen that the necessary quantity for the kinetic equations f d ~  [ Ue+dx may be found from the equation 
r 0 

1r AX s 

- -  q i + l )  J'de [ Uedx~_ ( h~ ) 7' (+_(q: +- _t_ 2~Ax ~,qede ) 
~t 6 el 

and the problem, just as it did for the lines, reduces to finding q~+- - qi+l +-. 

Let us write a more detailed expression for (k+)g, the reference coefficient of absorption in the group: 

( k + 

'~2 A x  

e~ 0 zh 
8~ Ax  

S f 
e ,  0 

AX I~ t 

Ax g~ ~ ' 

0 8~ 

where the averaged photoabsorpfion cross-sections are determined from the radiation density in the g-th group: 

A x  ~:2 

A x  gz 

S e vm) 
0 8Jr 

in what follows, (kc+)g is considered as the reference coefficient in the g-th group. 

Let us write an equation for qg+, the flux in the group of photons of the continuous spectrum. As an example, let us 
take the photon flux travelling in the positive direction: 

82 1 8~ 1 

e l  0 8x 0 

We write the solution of the transfer equation for the continuous spectrum in the form 

I~+i= - -  Ax + 1- -exp - -  Ax . 

Integrating with respect to ~ and e, we get 

8~  1 !i!'" q+l  = q + e x p ( - - ~ +  ( k  + ) g A x ) + 2 ~  de ~ d ~ - -  

-- =S oj .exp -- 

Here, (i + is determined by the relationship 
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e~ de S dlxD1iq-exp (__ kc Ax)=[S de 5 d~xlM~]exp(_~ < le~ >eAx) 1 

~, o I J' e ,  o 

jde.[dtxtxl~+exp-- , Ax 
- - l n  e, o 

j ee .[ e W  + 
o 

< k + > e~ kx 

As in (20), it is seen that the quantity ~+ rather weakly depends on the spectrum of the radiation, which makes it possible to 
preserve it during a fixed number of time increments. 

Let us introduce the parameter ~'i + by means of the equation 

j 'de rio p, exp - -  kx d ~ =  de E3 ( ) 

Then, finally, we can write: 

q ~  = q~+ exp (--  ~+ ( k~ + ) e~ Ax) -F 

,, T )  < >=,ax) . 

An analogous relation may be written for qi+l- and qi- .  
Using the parameters ~gi + and ~'gi + for the different groups of photons, interpolating and extrapolating them over the 

% ~x 

it is possible to calculate from the relationship given above [de[  Ue+dx, and to use them in kinetic and space-time cell, 

r 0 

power equations. 
Preservation and interpolation of the coefficients in the averaged transfer equations for spectral lines and groups of the 

continuous spectrum are carried out on the grid of the chief variables [1, 2], which are introduced in accordance with the 
specific physical situation. Generalization of the method to the case of spherical geometry is not difficult. 

The method described makes it possible to widen the range of application of averaging methods [1-4] to the case of 
a nonequilibrium plasma, and to obtain a solution of one-dimensional gas dynamics problems, taking into consideration the 

spectral and angular composition Of the radiation in considerable detail. 

NOTATION 

Ne, number of electrons per cm3; Nz, number of ions of charge z per cm3; Ezk , ionization potential of k-th shell of 
ion z; azk ph~ photoionization cross-section; c, photon energy; I + and I - ,  intensity of radiation travelling in the positive (+) 

and negative ( - )  directions; T e, electron temperature; Ax, size of computing cell; Ax' = Ax/2; /z, cosine of angle between 
direction of propagation of photon and the chosen axis of coordinates; k/+ , radiation absorption coefficient in a line for 
radiation travelling in the positive (negative) direction; r/l+ , corresponding emission coefficient; k c and "Oe, absorption and 
emission coefficients in the continuous spectrum; q+, one-sided radiation flux; f/u, oscillator strength; Au/, probability of 

spontaneous transition for a line; ~+,  line contour, normalized to unity; N (u), population density of upper state of a line; G(x, 
x'), kernel of integral equation; u i, velocity of the medium, calculated at the cell boundary; v, velocity in the expression for 
the line contour, taking account of the dynamic Doppler shift; r, optical thickness of the cell for quantum energy e; }+, %+-, 
/3 c +, ot 1 +,/31 +, ~ +,/~2 -+, parameters, characterizing the absorption and emission of the computational cell for a spectral line, 
which go into the averaged difference equations for one-sided fluxes; fc, fl, f2, input functions to those equations; }g+, ~'g-+, 

exp(__-xt) dt, exponential parameters characterizing the absorption and emission of the continuous spectrum; En(x ) = J tn 

integral. 
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